Case study:Broadwater Brook
Project overview
Status | Complete |
---|---|
Project web site | |
Themes | Habitat and biodiversity, Land use management - agriculture, Social benefits, Water quality, Urban |
Country | England |
Main contact forename | Peter |
Main contact surname | King |
Main contact user ID | User:Oartpk |
Contact organisation | Ouse & Adur Rivers Trust |
Contact organisation web site | http://www.oart.org.uk |
Partner organisations | Sompting Estate Trust, Environment Agency SSD, Heritage Lottery Fund |
Parent multi-site project | |
This is a parent project encompassing the following projects |
No |
Project summary
This urban chalk stream project has realigned the course of the Broadwater Brook, removing it from underground pipes and setting a new route through agricultural fields. Previously degraded from pollution entering from industrial areas and the main road network we have installed sediment traps at the upstream extent and have ensured vegetation establishment in the channel to further filter pollutants. Allowing for low flows (as a ephemeral stream) the stream is narrow with marginal shelves to provide wetland habitat whilst being flooded during heavy rainfall. The surrounding land has been transformed from arable maize fields into 6.9ha of wildflower meadow with 2.2km of new hedgerow and 500 trees forming a shaw woodland. Additional habitat in the form of three ponds, a re-wilding zone and scrapes have been formed along the riparian zone. The project tackled land contamination from neighbouring landfill along with accumulations of arsenic from previous land use. A mains sewer was realigned and mitigation for a chemical effluent pipe and mains power cable were also needed to complete the project which also had to content with a 1:3000 gradient and artificially raised ground through the centre of the site.
The project has been co-designed and delivered with the local community with numerous activities and events inspiring and raising awareness of chalk streams and the impact of urban living which has inspired behavioural change. Over 1000 members of the local community have been involved in the project whether through volunteering on practical tasks, attending educational events or being involved in one of the citizen science monitoring programmes. The site is now open to the public for the first time along a newly created Sompting Brooks River Trail which includes interpretation and artworks depicting the areas historical association with water.
Monitoring surveys and results
We have been monitoring the effectiveness of silt traps within the system along with taking water sample for chemical analysis. In addition we have undertaken BMWP sampling for freshwater invertebrates as well as ecological surveys for reptiles and amphibians, fish, birds, dragonflies, bats, harvest mice and macrophytes. All of these were also undertaken for 2 years before the project started to generate a baseline status for the site. Results show that, across all parameters, water quality is significantly improved and that the sediment traps are working in all but the most extreme flow conditions. Species diversity across the site has grown from a recorded 100 species in 2017/18 to 535 species in 2021. Five fish species have been recorded within the new channel (from none within the old channel). The site has also recorded the first Scarce Blue Tailed Damselfly in Sussex for 125 years, one of 18 species of Odonata now recorded on the Brooks. Water quality sampling has revealed significant amounts of nitrate being released from the aquifer over winter which has highlighted a need for further investigation of land management practices to the north of the project area.
We have also been monitoring impacts on the local community and results show a better appreciation and understanding of the water environment, that co-design and delivery has ensured guardianship of the site into the future and that providing outdoor opportunities in heavily urbanised areas is of great value to wellbeing and community cohesion. All results of the project will be available on the website from January 2022 - www.oart.org.uk/epic
Lessons learnt
- We used local contractors to provide ECI assistance during the development of designs, this resulted in large costs increases (even from the ECI) at tender and we would ensure that more consideration is given to the right contractor providing this advice from the beginning of the project.
- Relied on existing relationships and partnerships to provide solutions to constraints on site which meant no legal framework was in place for agreed actions and organizations changed their approach to elements of the project at the last minute. In future we would ensure that legal agreements are in place around service mitigation prior to appointing a contractor.
- We did not appreciate or appropriately consider the ground contamination constraints at an early enough stage. A lack of prior experience of these issues and relying on previous reports led to misunderstanding the costs and constraints this would cause. For future projects we would ensure, where potential land contamination is present, that early involvement of experts is obtained, and budgets reflect possible additional costs.
- We have also learnt that, through perseverance, projects which many believe to be unachievable due to costs and constraints can be delivered in a manner which is cost beneficial and provide multiple benefits to people and wildlife.
Image gallery
Catchment and subcatchmentSelect a catchment/subcatchment
Catchment
Subcatchment
Site
Project background
Cost for project phases
Reasons for river restoration
Measures
MonitoringHydromorphological quality elements
Biological quality elements
Physico-chemical quality elements
Any other monitoring, e.g. social, economic
Monitoring documents
Additional documents and videos
Additional links and references
Supplementary InformationEdit Supplementary Information
|