Case study:Lustrum Beck Flood Alleviation Scheme: Phase 2

From RESTORE
Revision as of 13:07, 5 November 2018 by Alexrrc (talk | contribs)
Jump to navigation Jump to search

This case study is pending approval by a RiverWiki administrator.

Approve case study

 

0.00
(0 votes)


To discuss or comment on this case study, please use the discussion page.


Location: 54° 32' 34.27" N, 1° 23' 4.67" W
Loading map...
Left click to look around in the map, and use the wheel of your mouse to zoom in and out.


Project overview

Edit project overview
Status In progress
Project web site http://www.therrc.co.uk/sites/default/files/projects/21_lustrum.pdf
Themes Flood risk management, Habitat and biodiversity, Hydromorphology, Land use management - agriculture, Land use management - forestry
Country England
Main contact forename Ted
Main contact surname Thomas
Main contact user ID
Contact organisation Environment Agency
Contact organisation web site http://www.gov.uk/government/organisations/environment-agency
Partner organisations Stockton-on-Tees Borough Council, Forestry Commission, Newcastle University
Parent multi-site project
This is a parent project
encompassing the following
projects
No
Project picture

Project summary

Edit project overview to modify the project summary.


The Lustrum Beck catchment (Map 1) is located in Stockton-on-Tees and is a tributary of the Tees. It has been identified through an ISIS-TUFLOW model that over 150 properties are at risk of flooding in the catchment within 2 main areas: Oxbridge and Browns Bridge. For these sites, the Lustrum Beck Flood Alleviation Scheme (FAS) has been split into 2 phases. Phase 1 is well underway and consists of constructing more traditional flood defences in the urban area of the catchment. Phase 2 is currently in the development stage and will involve storing water at a range of scales in the upstream catchment area using natural processes to attenuate water. This case study focuses on Phase 2 in the Lustrum Beck catchment and how natural processes are being incorporated into the scheme to reduce downstream risk. The model used identified that a total storage area of around 100,000m³ of storage within the local catchment area could reduce the discharge from the 1 in 100 year return period by 11.5%. This would reduce the peak flow of the 1 in 100 year event to less than 1 in 75 year event. The Lustrum Beck project is the first flood risk management scheme to develop a business case which includes the use of Natural Flood Management (NFM) to successfully attract Flood Defence Grant in Aid (FDGiA) funding to reduce flood risk.

Monitoring surveys and results

This case study hasn’t got any Monitoring survey and results, you can add some by editing the project overview.

Lessons learnt

This case study hasn’t got any lessons learnt, you can add some by editing the project overview.


Image gallery


ShowHideAdditionalImage.png


Catchment and subcatchment



Site

Name Lustrum Beck
WFD water body codes
WFD (national) typology
WFD water body name
Pre-project morphology
Reference morphology
Desired post project morphology
Heavily modified water body No
National/international site designation
Local/regional site designations
Protected species present No
Invasive species present No
Species of interest
Dominant hydrology
Dominant substrate
River corridor land use
Average bankfull channel width category
Average bankfull channel width (m)
Average bankfull channel depth category
Average bankfull channel depth (m)
Mean discharge category
Mean annual discharge (m3/s)
Average channel gradient category
Average channel gradient
Average unit stream power (W/m2)


Project background

Reach length directly affected (m)
Project started 2014
Works started
Works completed
Project completed
Total cost category
Total cost (k€) £4m"£" is not declared as a valid unit of measurement for this property.
Benefit to cost ratio
Funding sources Flood and Coastal Risk Management, Environment Agency Grant in Aid, Local levy funding, Tees Rivers Trust

Cost for project phases

Phase cost category cost exact (k€) Lead organisation Contact forename Contact surname
Investigation and design
Stakeholder engagement and communication
Works and works supervision
Post-project management and maintenance
Monitoring



Reasons for river restoration

Mitigation of a pressure Flood risk management
Hydromorphology
Biology
Physico-chemical
Other reasons for the project


Measures

Structural measures
Bank/bed modifications
Floodplain / River corridor Offline storage areas
Planform / Channel pattern
Other
Non-structural measures
Management interventions
Social measures (incl. engagement)
Other


Monitoring

Hydromorphological quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Biological quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Physico-chemical quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Any other monitoring, e.g. social, economic

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative


Monitoring documents



Additional documents and videos


Additional links and references

Link Description

Supplementary Information

Edit Supplementary Information