Case study:Chelmer Valley Local Nature Reserve: Difference between revisions

From RESTORE
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
{{Location}}
{{Location}}
{{Project overview
{{Project overview
|Project title=Chelmer Valley Local Nature Reserve
|Status=Complete
|Status=Complete
|Themes=Habitat and biodiversity, Hydromorphology, Water quality
|Themes=Habitat and biodiversity, Hydromorphology, Water quality
Line 11: Line 10:
|Main contact surname=Butcher
|Main contact surname=Butcher
|Multi-site=No
|Multi-site=No
|Project summary=Restoration of the River Chelmer upstream of Chelmsford City Centre by re-profiling the banks to increase in-channel morphological diversity, create additional marginal aquatic habitats, improve floodplain connectivity and create additional backwater habitats.
The River Chelmer has historically been heavily modified to improve flood protection and land drainage. This has led to a uniform wide, straight, deep channel upstream of Chelmsford City Centre. This in tern has resulted in reduced plant diversity, and there has recently been deterioration in fish status.
|Monitoring surveys and results=Increasing the diversity of the channel provide different habitats to support a wider diversity of plants and animals. Fish bays provide shallow, slower flowing, warmer water preferred by small fish and fry.
Blackwater habitats increase habitat diversity, whilst providing a refuge for fish and invertebrates from high flows.
The banks and channel of the main river were re-profiled at 9 locations. The river bank was lowered to re-connect the river to its natural floodplain, improving marginal and riparian wetland habitats. Improving connectivity between the river and floodplain allows sediment to settle out on the floodplain, and fish and invertebrates to escape from the highest flows in flood events By storing water on the floodplain sooner, downstream flood risk can also be reduced. The bank material was pushed into the channel, creating earth berms. These narrow the channel during low flows, increasing water velocity. This helps other river processes such as sediment transfer, erosion and depositing and oxygenation of the water, which creates habitats and improves water quality. The berms also create diversity of marginal and aquatic habitats, which was previously very uniform. In addition, shallow bays were created and a backwater improved to provide additional habitat for fish and fry.
|Lessons learn=Early communication with permitting bodies and involvement of local communities is essential to deliver successful projects in a short timescale.
}}
}}
{{Image gallery}}
{{Image gallery}}

Revision as of 15:15, 1 August 2016

This case study is pending approval by a RiverWiki administrator.

Approve case study

 

0.00
(0 votes)


To discuss or comment on this case study, please use the discussion page.


Location: none specified



Project overview

Edit project overview
Status Complete
Project web site
Themes Habitat and biodiversity, Hydromorphology, Water quality
Country England
Main contact forename Matt
Main contact surname Butcher
Main contact user ID
Contact organisation
Contact organisation web site
Partner organisations
Parent multi-site project
This is a parent project
encompassing the following
projects
No
This case study hasn’t got a picture, you can add one by editing the project overview.

Project summary

Edit project overview to modify the project summary.


Restoration of the River Chelmer upstream of Chelmsford City Centre by re-profiling the banks to increase in-channel morphological diversity, create additional marginal aquatic habitats, improve floodplain connectivity and create additional backwater habitats. The River Chelmer has historically been heavily modified to improve flood protection and land drainage. This has led to a uniform wide, straight, deep channel upstream of Chelmsford City Centre. This in tern has resulted in reduced plant diversity, and there has recently been deterioration in fish status.

Monitoring surveys and results

Edit project overview to modify the Monitoring survey and results.


Increasing the diversity of the channel provide different habitats to support a wider diversity of plants and animals. Fish bays provide shallow, slower flowing, warmer water preferred by small fish and fry. Blackwater habitats increase habitat diversity, whilst providing a refuge for fish and invertebrates from high flows. The banks and channel of the main river were re-profiled at 9 locations. The river bank was lowered to re-connect the river to its natural floodplain, improving marginal and riparian wetland habitats. Improving connectivity between the river and floodplain allows sediment to settle out on the floodplain, and fish and invertebrates to escape from the highest flows in flood events By storing water on the floodplain sooner, downstream flood risk can also be reduced. The bank material was pushed into the channel, creating earth berms. These narrow the channel during low flows, increasing water velocity. This helps other river processes such as sediment transfer, erosion and depositing and oxygenation of the water, which creates habitats and improves water quality. The berms also create diversity of marginal and aquatic habitats, which was previously very uniform. In addition, shallow bays were created and a backwater improved to provide additional habitat for fish and fry.

Lessons learnt

Edit project overview to modify the lessons learnt.


Early communication with permitting bodies and involvement of local communities is essential to deliver successful projects in a short timescale.


Image gallery


ShowHideAdditionalImage.png


Catchment and subcatchment



Site

Name
WFD water body codes GB105037033950
WFD (national) typology
WFD water body name
Pre-project morphology
Reference morphology
Desired post project morphology
Heavily modified water body No
National/international site designation
Local/regional site designations
Protected species present No
Invasive species present No
Species of interest
Dominant hydrology
Dominant substrate
River corridor land use
Average bankfull channel width category
Average bankfull channel width (m)
Average bankfull channel depth category
Average bankfull channel depth (m)
Mean discharge category
Mean annual discharge (m3/s)
Average channel gradient category
Average channel gradient
Average unit stream power (W/m2)


Project background

Reach length directly affected (m)
Project started
Works started
Works completed
Project completed
Total cost category
Total cost (k€)
Benefit to cost ratio
Funding sources

Cost for project phases

Phase cost category cost exact (k€) Lead organisation Contact forename Contact surname
Investigation and design more than 10000 k€ 2500025,000 k€ <br />25,000,000 € <br />
Stakeholder engagement and communication
Works and works supervision
Post-project management and maintenance
Monitoring



Reasons for river restoration

Mitigation of a pressure
Hydromorphology
Biology
Physico-chemical
Other reasons for the project


Measures

Structural measures
Bank/bed modifications
Floodplain / River corridor
Planform / Channel pattern
Other
Non-structural measures
Management interventions
Social measures (incl. engagement)
Other


Monitoring

Hydromorphological quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Biological quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Physico-chemical quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Any other monitoring, e.g. social, economic

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative


Monitoring documents



Additional documents and videos


Additional links and references

Link Description

Supplementary Information

Edit Supplementary Information