Case study:Craigton Riparian and NFM Orchard Planting

From RESTORE
Revision as of 14:59, 25 September 2014 by Lbelleni (talk | contribs)
Jump to navigation Jump to search

This case study is pending approval by a RiverWiki administrator.

Approve case study

 

0.00
(0 votes)


To discuss or comment on this case study, please use the discussion page.


Location: 56° 13' 7.23" N, 3° 57' 11.97" W
Loading map...
Left click to look around in the map, and use the wheel of your mouse to zoom in and out.


Project overview

Edit project overview
Status Complete
Project web site http://www.cress.stir.ac.uk/allanwater/
Themes Economic aspects, Fisheries, Flood risk management, Habitat and biodiversity, Social benefits
Country Scotland
Main contact forename Lawrence
Main contact surname Belleni
Main contact user ID User:Lbelleni
Contact organisation The Conservation Volunteers and the Centre for River Ecosystem Science
Contact organisation web site http://www.tcv.org.uk/scotland
Partner organisations
Parent multi-site project
This is a parent project
encompassing the following
projects
No
Riparian trees planted along the bank of the river, connecting to remnant riparian woodland and covering areas of the bank embankment that are breached earliest by out of channel flow.

Project summary

Edit project overview to modify the project summary.


Craigton Farm sits inside a large meander of the Allan Water between the villages of Ashfield and Kinbuck. The Allan Water has two large areas downstream of Craigton classified as Potentially Vulnerable Areas to flooding, including the downstream townships of Dunblane and Bridge of Allan. During flood events out of channel flow passes across the farm's fields, which has little rugosity to slow it down or hold it up.

Video footage of flood water flowing back into the Allan Water at the downstream side of the meander encompassing Craigton Farm: https://www.youtube.com/watch?v=Pk-AUS_9r60

Objectives of the project were: to reduce the speed of the out of channel flow across the farm fields; restore and increase natural riparian habitat that will benefit terrestrial and aquatic biodiversity; increase the opportunity for woody debris interaction in the river system that will benefit fisheries and habitat diversity; create an area of enhanced natural beauty for local communities to enjoy; provide an opportunity for local people to be able to learn, manage and harvest a locally sustainable food resource through the Craigton Community Orchard Group; and an opportunity to engage with local residents about Natural Flood Management by obtaining local volunteers to carry out the tree planting.

Work carried out: 420 riparian tree species including downy birch, goat willow, osier, hawthorn, rowan and hazel were planted on the banks of the Allan Water at Craigton Farm inline with where water breaches over the bank at the upstream end of the meander, and where flood water flows back into the river at the downstream end. 300 trees were planted on the upstream side and 120 on the downstream side. Trees were planted by volunteers with emphasis given to plant trees at random spacing and in dense clumps inline with out of channel flow pathways. The width of the tree planting is around 5m for the majority of the two sections, however inside a fenced area on the upstream side of the meander where remnant woodland exists that is planted up to 30m at points, bringing the planting area to around 0.5ha.

In addition, willow cuttings/whips 6-9inches long were collected from local willows and planted in parts of the river bank that would have a lot of flow interaction such as at the water's edge, on eroded bank faces or inline with out of channel flow pathways to increase rugosity without risking more valuable tree species.

23 orchard trees were planted in an old disused horse field in the flood pathway at the upstream side of the farm. The orchard was designed so that no distinct channels or rows were available for flowing water to rush through, but instead the flowing flood water would dissipate some energy by going through a ping-pong table style design of orchard tree rows, slowing the flow. Mound planting was used to elevate the root ball above the ground level to help protect the roots from being submerged for long periods in flood water and therefore affecting the orchard trees survival. Orchard trees were planted 10m apart to allow room for growth, and ease of access, maintenance and harvest in the future.

In addition, 105 wild harvest shrub species were planted in a similar ping-pong table style design, behind the orchard trees. The wild harvest trees create another obstacle for flowing flood water to pass through dissipating more energy. The field that comprises the orchard and wild harvest trees covers 1ha.

Challenges included managing volunteers to plant trees correctly and randomly; and continual maintenance and care of trees over the long term.

Thankfully a very cooperative landowner.

Funding: 420 wet woodland trees obtained through the Woodland Trust's Free Trees Grant; 23 orchard trees obtained from the Central Scotland Green Network's Orchard Grant Scheme; and 120 wild harvest obtained through the Woodland Trust's Free Trees Grant.

Monitoring surveys and results

Edit project overview to modify the Monitoring survey and results.


Monitoring of the tree establishment success rate will be carried out.

Lessons learnt

This case study hasn’t got any lessons learnt, you can add some by editing the project overview.


Image gallery


SAM 1696.JPG
SAM 1697.JPG
SAM 1716.JPG
SAM 1771.JPG
SAM 2107-001.JPG
1891196 10152170859253550 1163672624 n.jpg
SAM 2126.JPG
Spring harvest.jpg
ShowHideAdditionalImage.png


Catchment and subcatchment



Site

Name
WFD water body codes
WFD (national) typology
WFD water body name
Pre-project morphology
Reference morphology
Desired post project morphology
Heavily modified water body
National/international site designation
Local/regional site designations
Protected species present
Invasive species present
Species of interest
Dominant hydrology
Dominant substrate
River corridor land use
Average bankfull channel width category
Average bankfull channel width (m)
Average bankfull channel depth category
Average bankfull channel depth (m)
Mean discharge category
Mean annual discharge (m3/s)
Average channel gradient category
Average channel gradient
Average unit stream power (W/m2)


Project background

Reach length directly affected (m)
Project started
Works started
Works completed
Project completed
Total cost category
Total cost (k€)
Benefit to cost ratio
Funding sources

Cost for project phases

Phase cost category cost exact (k€) Lead organisation Contact forename Contact surname
Investigation and design
Stakeholder engagement and communication
Works and works supervision
Post-project management and maintenance
Monitoring



Reasons for river restoration

Mitigation of a pressure
Hydromorphology
Biology
Physico-chemical
Other reasons for the project


Measures

Structural measures
Bank/bed modifications
Floodplain / River corridor
Planform / Channel pattern
Other
Non-structural measures
Management interventions
Social measures (incl. engagement)
Other


Monitoring

Hydromorphological quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Biological quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Physico-chemical quality elements

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative

Any other monitoring, e.g. social, economic

Element When monitored Type of monitoring Control site used Result
Before measures After measures Qualitative Quantitative


Monitoring documents



Additional documents and videos


Additional links and references

Link Description

Supplementary Information

Edit Supplementary Information